

Hydraway is a geocomposite subsurface drainage solution that's composed of a structured high-density polyethylene (HDPE) perforated core that is thermally bonded to a geotextile filter fabric.

The geotextile allows water to pass through while retaining backfill materials. The perforated core allows water collection from all sides and provides a continuous flow path.



Hydraway provides a value engineered solution to the conventional perforated pipe and aggregate subsurface drainage systems. This solution is more durable as it prevents clogs, fungal growth, and disintegration.

Hydraway comes in widths of 6 and 12 inches with a standard length of 150 feet. It can be customized in a variety of lengths and widths upon request.

| PROPERTY                                 | TEST METHOD                  | UNIT OF MEASUREMENT | HY206-A150        | HY211-A150        |
|------------------------------------------|------------------------------|---------------------|-------------------|-------------------|
| Size                                     |                              | in x ft             | 6 x 150           | 12 X 150          |
| GEOTEXTILE¹ – NEEDLE-PUNCTURED, NONWOVEN |                              |                     |                   |                   |
| Elongation                               | ASTM D-4632-91               | %                   | 50                | 50                |
| Grab Tensile                             | ASTM D-4632-91               | lbs                 | 120               | 120               |
| Puncture Strength                        | ASTM D-4833-00               | lbs                 | 65                | 65                |
| Mullen Burst Strength                    | ASTM D-3756-87               | psi                 | 225               | 225               |
| Trapezoidal Tear                         | ASTM D-4533-91               | lbs                 | 50                | 50                |
| Wide width Tensile                       | ASTM D-4595                  | lbs/in              | 50                | 50                |
| UV Resistance <sup>2</sup>               | ASTM D-4355-02               | %                   | 70                | 70                |
| Permittivity                             | ASTM D-4491-99A              | sec                 | 1.8               | 1.8               |
| Permeability                             | ASTM D-4751-99A <sub>4</sub> | cm/sec              | .21               | .21               |
| Flow Rate                                | ASTM D-4491                  | gal/min/ft²4        | 135               | 135               |
| AOS (EOS)                                | ASTM D-4751-99A              | US standard sieve   | 70                | 70                |
| CORE - HDPE                              |                              |                     |                   |                   |
| Compressive Strength                     | ASTM D-695/1621 <sub>5</sub> | PSF                 | 11,400 (yield)    | 11,400 (yield)    |
|                                          |                              |                     | 16,800 (collapse) | 16,800 (collapse) |
| Flow Rate at 1,500 PSF                   | ASTM D-47162 <sub>3</sub>    | GPM/ft-width        | 11                | 21.9              |
| Peel Strength <sup>3</sup>               | ASTM D-1876                  | lbs/ft-width        | 50                | 50                |

<sup>1. 4</sup> oz fabric.

<sup>2.</sup> Based on 500 hours of testing.

<sup>3.</sup> Gradient of 0.1

<sup>4.</sup> Values shown are in weaker principal direction. Minimum average roll values are calculated as the typical minus two standard deviations. Statistically, it yields a 97.7% degree of confidence that nay samples taken from quality assurance testing will exceed the value reported.

<sup>5.</sup> Modification was made to an existing ASTM test since a recognized test method had not been established for this type of product at time of testing.